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The problem of the fastest motion (bending) of a plane two-link mechanism with a load on the end from a specified initial 
configuration to a specified final configuration is considered. The moduli of the controlling moments at the fixed hinge and the 
hinge between the links are bounded. It is shown that motions for which the links remain folded over the whole time interval 
are optimal. A control which satisfies the Pontryagin maximum principle is constructed numerically for the case when the links 
are not superposed in the boundary configurations. In the case of this control, the second link oscillates around the first during 
the bending of the two-lhtk mechanism without being superposed on it in any time interval. © 1996 Elsevier Science Ltd. All 
rights reserved. 

The moment of inertia of a plane two-link mechanism with two degrees of freedom about its fixed axis 
is minimal when the links are superposed. The assertion that motions of a two-link mechanism exist 
which are time-optimal and for which the links rotate over the whole time interval while remaining 
folded (superposed) therefore suggests itself. It is shown below that such optimal motions do actually 
exist. Such motions are possible if the links are also superposed in the specified boundary configura- 
tions. A motion consisting of three segments has been constructed [1] for the case when the links are 
not superposed in the boundary configurations. In the first segment, the second link rotates until it is 
superposed on the first. In the second segment the links rotate and, in the third segment, the second 
link "opens" from the, first by a specified angle. Here, in the first and third segments, the interlink control 
moment switches bel~een a finite number of values. It has been confirmed [1] that such a motion and 
the corresponding control are optimal. 

Below, for certain ~:ases when the links are not superimposed in the boundary configurations, a control 
and the corresponding motion for which the second link oscillates about the first without being super- 
posed on it any time interval during the bending of the two-link mechanism are constructed numerically. 
The motion occurs over a shorter time interval than that considered previously [1] for which there is 
a singular mode of motion with folded links and, in the first and third segments, the interlink moment 
is changed just once. Numerical investigations show that the motion satisfies Pontryagin's maximum 
principle. This provides a basis for assuming that it is optimal. If the links are not superposed in the 
boundary configurations, a singular mode in the optimal motion of a two-link mechanism can apparently 
exist as in [2, 3] only in the "neighbourhood" of the so-called "chattering" control modes in which the 
controlling interlink moment is switched an infinite number of times. 

In the case of the control considered in [1], the time required for the displacement of the two-link 
mechanism is slightly greater than the time required in the case of the control constructed here, which 
is obviously the optimal control. A similar situation also occurs in the case of the systems considered 
in [6, 7]. The constru¢.~ion of the optimal control is, however, of interest if only to obtain such an estimate. 

The problem of the control of systems with a variable inertial characteristic, but for other mechanical 
objects, has been considered in [2, 3, 6-9]. 

1. E Q U A T I O N S  O F  M O T I O N  

Consider the two-link mechanism OKL with a load m on the end (Fig. 1) which moves in a horizontal 
plane and possesses two degrees of freedom. The angle Xl characterizes the inclination of the link OK 
from some fixed direction ON, and x3 is the angle between the links OK and KL. The links are assumed 
to be absolutely rigid bodies. Let ll and J1 be the length of link OK and its moment of inertia about the 
point O, respectively, let ml be the point mass at the hinge K and let/2, m2, 3"2 and r be the length of 
the link KL, its mass, its moment of inertia about the point K and the distance from K to its centre of 
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mass, respectively. We now introduce the dimensionless parameters of the mechanism, which will be 
required later 

A :  JJ~ +l+ml + m2, B J2 +:/2~2 
ml~ m m = ~ll21 ~ ~1) ' C= ~I + m2rmll (1.1) 

The moments M1 and ME, which are bounded in absolute magnitude 

IMII~< Mlo , IM21~< M20 (1.2) 

act at the hinges O and K. 
On introducing the dimensionless time x and the moments ~q, ~1. 2 using the formulae 

TxIT 2 - ml2 ~ MI M2 (1.3) t=  
-MI-----~- ) , I-tl = -  , M I  0 ~ 2 = ~ M I  0 

the equation of motion of the two-link mechanism can be written in Cauchy form as follows: 

X l  = X2 - -  [~x4 8 ' x2 = lal' x3 = x4 (1.4) 

8 13 t .  Csinx~. 2 
~4 ~ 2  a = - + 13 x, 

(O~= A B - C 2  cos2 x3 , ~= B - C c o s x  3, 7= A-Ccosx3, 8=1~+)'). 

Here, differentiation with respect to dimensionless time is denoted by a dot and x2, the dimension- 
less angular momentum of the system with respect to the point O, is 

x 2 = (A + B -  2Ccos x 3)xt + (B - Ccos x 3 )x3 

In Eqs (1.4), (z and ~5 are the dimensionless determinants of the kinetic energy matrix and its moment 
of inertia about the point O. The angle Xl is a cyclic coordinate. 

Using the notation (1.3), relations (1.2) take the form 

I}.t]l~ 1, 11£21~ I.t2o (i.t2o = M20 / MIo ) (1.5) 

2. F O R M U L A T I O N  OF THE P R O B L E M  

At the initial instant of time, let the system be at rest in the specified position 

X 1 ( 0 )  = 0 ,  X 2 ( 0 )  ---- 0 ,  X3(0  ) = X30 , X 4 ( 0  ) = 0 (2.1) 
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Also, let the final ,desired state of the system be 

xj(0)=xlo, x2(0)=0, x3(0)=x3o, x4(0)=0 (2.2) 

We shall now fon~ulate the problem of finding the control momen t s  ~tl(X), ~2('1;) which ensure 
that the two-link mechanism transfers from its initial state (2.1) to its final state (2.2) in the minimal 
time 0. 

We shall assume that 

x3o =-X3o, X3o/> 0 (2.3) 

that is, that the initi~d configuration (2.1) and the final configuration (2.2) of the two-link mechanism 
are symmetric, one to the other, with respect to the line OS, the equation of which has the form Xl = 
x10/2 (Fig. 2) in polar coordinates. 

Problems of the optimal control of a two-link mechanism have been studied in many investigations. 
A review of a number of these can be found in [10]. 

The Pontryagin function [11] for the problem has the form 

H=~/I  x2-1~4~ + ¥2~tl + ~1/3x4 + ~1/4/.~ ~2 _ ..~.~ ~tl [-~L tJt ~ + T ( x  2 C s i n  x3 2 + 13~x42 ) |  q/ (2.4) 

The conjugate variables satisfy the equations 

~1 =0,  ~/2 =- -~L-2C~4x2  
sinx 3 

et8 o 

d(1 / 8) 
~lJ" 3 -~ --~IX2 + ~lllX 4 

dx 3 
d(13 / 8) _ ~1/4~2 d(8 / et) 

dx 3 dx 3 

+ ~ 4 1 x  I - -  
d(l~ / ~) 

dx 3 

d (sinx~'~ x2 d fl3ysinx~ (2.5) 

13y sin x 3 
~'4 = ¥2 - ¥3 -2C~4x4 t~8 

L 

N 

Fig. 2. 
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It follows from the maximum principle that the optimal control must satisfy the conditions 

pq (x) = sign ~t/(x), la2(x) = ~t20 sign ~4(x) (2.6) 

(~(x) = ~ 2 ( x ) -  ~4(x)l~(x) / ~(x)) 

It follows from the first equation of (2.5) that ¥1(x) -= const, and it can be assumed that ~1 = 1, 0 
or -1. 

3. S Y M M E T R Y  OF T H E  E Q U A T I O N S  

If xi(x), ~i(X) (i = 1, 2, 3, 4) is the solution in some interval [0, 0] of system (1.4), (2.5) in the 
case of any control functions ~k(X) (k = 1, 2), then (-1)ix/(0 - x), (-1)i+1~i(0 - 17) (i = 1, 2, 3, 4) 
is also a solution of this system in the same interval in the case of the control functions ~ ( 0  - ~) 
( k =  1,2). 

While keeping condition (2.3) in mind, we shall subsequently seek a solution of the above time-optimal 
problem which possesses the symmetry property 

Xl ('I~) = Xl0 -- Xl (0-- '[), Xj("C)=(--I)Jxj(O--T,) 
I-tk(X) = - I a b ( 0 - x )  (k = 1, 2) 

¥i('~)=(-1)i+l~i(O-'Q (i=1, 2, 3, 4) 

(j  =2, 3, 4) 

(3.1) 

The symmetry property (3.1) facilitates the solution of the problem. With conditions (2.1)-(2.3), it 
is only possible to construct a solution of system (1.4), (2.5), (2.6) in the interval [0, 0/2] and then, using 
relations (3.1), to extend it to the interval [0/2, 0]. The following conditions, imposed on the functions 
xi(x), Vi(x) (i = 1, 2, 3, 4) at the instant of time x = 0/2 and which help to solve the boundary-value 
problem in the interval [0, 0/2] 

Xl(O/2)=xlO/2, x3(0/2)  = 0, ~/2(0 / 2) = ~1/4(0/2) = 0 (3.2) 

follow from equalities (3.1). 
By virtue of the last two conditions of (3.2), it is easily checked, during numerical investigations, 

whether the controls lxa(x), lx2('c) constructed on the basis of certain considerations satisfy the maximum 
principle or not. The point is that the constant ~/1 can be determined starting from physical considerations 
and such a check then reduces to the exhaustive search for just the single quantity ¥3(0/2). 

Note that a number of mechanical systems [12, 13] possess the property of symmetry (reversibility) 
of the type of (3.1) when there are no dissipative forces. 

4. N U M E R I C A L  I N V E S T I G A T I O N S  

In the numerical investigations we consider a two-link mechanism with weightless links 

Ii = 12, J I  = ,12 = m2 = 0 (4.1) 

Here ,A = 1 + ml/m, B = C = 1, as follows from (1.1). The ratio of the mass of the load m to the mass 
ma which is concentrated at the hinge K is assumed to be equal to 10 and Ix20 = 6. 

First, we shall construct numerically the solution of the boundary-value problem (1.4), (2.5) (2.6) 
subject to the conditions 

XlO = 2,20003, x30 = 1,49929 (4.2) 

The relation between the quantities in (4.2) is such that the functions ~ta(x ) and ~t2(~ ) are controls of 
the "acceleration-braking" type, that is, each has exactly two intervals of constancy and a single switching 
when x = 0/2 (0 = 1.19826) in the interval [0, 0] 

~t)(x) = I w h e n  0 ~< x ~< 0/2 ,  Ixl(x ) = - 1  w h e n  0/2 < x ~< 0 (4 .3)  
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~tz(x) = -1 when 0 ~< x ~< 0/2, kt2(x) = 1 when 0/2 < x ~< 0 (4.4) 

The variables xl(x), xa(x), ~(x), ~4(x), lxl(x), ~t2(~), which correspond to the solution which has been 
constructed, are shown in Fig. 3. In the case of this solution, ~/1 = 1, ~3(0/2) = ~4(0/2) = 0. A set of 
values OfXl0 , x30 exists for which the controls have the form of (4.3) and (4.4). 

Now, let Xl0 = 2.21)003, as in (4.2), and x30 < 1.49929. Here, the motion along the Xl coordinate is 
that which "limits" the time. The variables Xl(X), x3(x), ~(x), ¥4(x), lxl(~), lx2(x) which correspond to the 
solution of the boundary-value problem (1.4), (2.5), (2.6), subject to the conditionx30 = 0.7 (0 = 1.08182, 
~1 = 1, ~3(0/2) = 0.528), are shown in Fig. 4. In the same way as with conditions (4.2), the angle xl 
increases with time and the angle x3 decreases strictly monotonically. As before, the control ~q(x) only 
switches once in the middle x = 0/2 of the interval of motion, that is, it has the form of (4.3). Unlike 
(4.4), the control ~t2(x) has four intervals of constancy (xl = 0.32806) 

B2(I:) = -1 when 0 ~< x ~< xl, B2(x) = 1 when xt < x ~ 0/2 

B2(1:) = -1 when 0/2 < x ~< 0 - xl, g2(x) = 1 when 0 - xl < x ~< 0 

(4.5) 

The problem of the numerical construction of the control (4.5) consists of finding the instant of 
switching xl for which, at a certain instant of time, the equalities Xl = x10/2, x3 = 0 (see the first two 
conditions of (3.2)) are satisfied. This instant of time is assumed to be equal to 0/2 (~tl(X) ~- 1 when 0 
~< x ~< 0/2). The value of ¥3(0/2) (see the last two conditions of (3.2)) is then sought for which the control 
which has been found lx2(x) and, also, ~tl(x) satisfy conditions (2.6). 

With conditions (4..2) and ¥1 ~- 1, ¥3(0/2) = 0, a plot of the function ¥4(x) intersects the abscissa 
once at x = 0/2 (see Fig. 3) while touching it, since q4(0/2) = ¥3(0/2) = 0. The similar behaviour of 
the function ~4(x) "suggests" that, whenx30 < 1.49929, the control (4.4) changes, "acquiring" new switch- 
ing points and intervals of constancy. In Fig. 4, the plot of the function ~t4(x ) already executes oscillations 
"around" the instant x = 0/2 which also "leads" to the appearance of the new switching points Zl and 
0 - xl (see control (4.5)). In this case, additional intervals (xl, 0/2), (0/2, 0 - Xl) of constancy of the 
control lx2(x) appear on both sides of the point x = 0/2. 

When 

xjo = 2,20003, X3o = 0.3 (4.6) 

a motion of the two-link mechanism is now possible which contains a segment of a singular mode when 
the links are folded. (Such a motion does not exist with the conditions Xl0 = 2.20003, x30 = 0.7, since, 
in the case of control (4.5), the velocity x4 < 0 up to the instant when Xl = x10/2, x3 = 0.) At the onset 
of such a motion which has been constructed numerically, the second link KL rotates until it is 
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Fig. 3. Fig. 4. 
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superimposed with the first link OK, the angle x3 decreases strictly monotonically in this case, the velocity 
x4 vanishes and, as previously, the angle Xl increases strictly monotonically. The links then rotate together 
for a "short" time while being superposed (x3 = 0, JCl > 0). In the last and third segment, the link KL 
"unfolds" from the link OK and occupies the specified position up to the final instant T, the angle x3 
decreases strictly monotonically in the third segment and, at about the time T, the velocityx4 vanishes 
and, as previously, the angle Xl increases strictly monotonically in the last segment. During the motion 
the link KL does not oscillate with respect to the link OK. The time of the motion which has been 
described T = 0.96856. The control ~tl(X) has the form (4.3) (the notation 0 has to be replaced by 7). 
The control lX2(~) has the form (xl = 0.21776, x2 = 0.44238) 

I . t 2 (X)  = - 1  when 0 ~< x ~< xl, ~t2(x) = 1 when xl < x ~< x 2 

la2(x) = 0 when z 2 < x ~< T - X 2 

P-2(X) = - i  whenT - x2 < x ~< T - "c I, tx2(x ) = 1 when T - xl < x ~< T 

(4.7) 

It is shown schematically in Fig. 5. Just when x2 ~< x ~< T - I; 2 the links are folded and the moment  of 
inertia of the two-link mechanism with respect to the hinge O is minimal. 

However, the motion shown in Fig. 6 (¥1 -- 1, ~3(0/2) = 0.08873), which satisfies the maximum 
principle, takes less time in the case of conditions (4.6). In the case of such a motion, the link KL 
completes oscillations around the link OK, that is, the angle x3 does not decrease strictly monotonically 
(x4(0/2) > 0). The time of this apparently optimal motion 0 = 0.96830. It is less, although insignificantly, 
than the time T = 0.98656 of the motion which contains the singular mode, the gain in time being just 
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2.6 x 10 -4. The control ~1('17) has the form of (4.3) and ~2('17) has the form of (4.5). Here, the switching 
time 171 = 0.21938 is somewhat greater than the switching time 'gl = 0.21776 for the motion with a segment 
of the singular mode:, that is, the retardation of link KL in the case of a control of the form of (4.5) 
begins later than in tile case of control (4.7). 

IfXlo = 2.20003, x3o = 0.256, a solution of the boundary-value problem (1.4), (2.5), (2.6) is obtained 
when ¥1 ~ - -  1, ~3(0/2) = 0.0017. The graph of the function ~4(17) "almost" touches the abscissa (~/4(0/2) 
= 0.0017) when 17 = 0/2 which enables us to postulate that, when x30 < 0.256, control (4.5) changes 
and, at around the instant 0/2, acquires new switching points and intervals of constancy. It might be 
expected that, as the quantity x30 decreases, the number of switching points and intervals of constancy 
of the control !x2(17) would increase and, beginning from a certain sufficiently small value o f  x30 , their 
number, as in [2-5], would become infinite: a singular mode of motion with folded links also arises here. 

Yet another motion which satisfies the maximum principle is shown in Fig. 7. The variables Xl(X), 
xa(x), q/4(x), lXl(x), lt2(x) which correspond to the solution of the boundary-value problem (1.4), (2.5), 
(2.6) are shown for the case when Xl0 = 2.49384, x30 = 0.3. In the case of this solution 0 = 1.02708, ~1/1 
-- 1, ~3(0/2) = 0.01289. The relative gain in time with control (4.5) is somewhat greater in this case 
than in the case of (4.6). 

In the cases considered above with a control ~t2(x) of the form of (4.7) the times taken turned out to 
be greater than in the case of a control of the form of (4.5) when ~t2(x ) * 0 in any time interval. However, 
the relative gain in time turns out to be exceedingly small in this case and the question may arise as to 
whether or not this difference in time is a result of inaccuracy in the calculations. In order to answer 
this question, investigations were carried out with different boundary configurations of the two-link 
mechanism were considered. In all of the versions treated, the time taken turned out to be less in the 
case of a control of the type of (4.5). Furthermore, an analytic proof of the fact that a control of the 
type of (4.7) is not optimal is presented in Section 5. What has been said suggests that, from the point 
of view of speed of response, control (4.5) is actually better than control (4.7). 

Using the physical arguments presented in [6, 7] we can obviously explain why, in the case of the 
oscillatory motion of the link KL which is accomplished using control (4.5), the two-link mechanism 
succeeds in turning more rapidly than in the case of motion with folded links, which occurs with control 
(4.7). Up to the begimaing of the singular mode in the case of control (4.7), an acceleration of the link 
KL initially occurs and then a braking. During the acceleration, the moment of inertia of the two-link 
mechanism decreases at the maximum rate while, during braking, it decreases more slowly. In the case 
of motion with oscillatiions (in the case of control (4.5)), the moment of inertia also initially decreases at 
the maximum rate but the braking begins later than in the case of control (4.7). Although the link OK is 
only superposed on the link KL for an instant, the moment of inertia for the motion with control (4.5) 
still turns out to be less "on the average" than in the case of control (4.7). Hence, the motion with oscillations 
is preferable from the point of view of the speed of response to the motion with the folded links. 

If x30 = 1.49929, as in (4.2), andxl0 < 2.20003, then it is the motion with respect to the anglex3 which 
"limits" the time. In this connection, we return to the case of (4.2). Numerical investigations show that, 
in this case, functions (4.3) and (4.4) not only satisfy conditions (2.6) when ~F1 =- 1, ~3(0/2) = 0 but, also, 
when ¥1 -- 1, -59.845 -< ¥3(0/2) ~< 0. If the quantity ¥3(0/2) is equal to the right limiting value, that is, 
~3(0/2) = 0, then, as was stated above, the graph of the function ~4(x) intersects the abscissa axis just 
once when 17 = 0/2 while touching it. In this case, a plot of the function ¥(17) also intersects the abscissa 
axis once at the point x = 0/2 without touching it (see Fig. 3). If, however, the quantity ~3(0/2) takes the 
left limiting value, that is, ¥3(0/2) = -59.845, then the functions ¥4(x) and ¥(x) change roles in a certain 
sense: a plot of the function ~4(17) intersects the abscissa axis once without touching it at 17 = 0/2, a plot 
of the function ~(x) touches the ascissa axis at x = x' = 0.50744 and x = 0 - x" without intersecting it and 
intersects it once at 17 = 0/2 without touching it (Fig. 8). This behaviour of the functions ~4(x) and ~(z) 
enables us to postulate that, when xl0 < 2.20003, the control lXl('r) "acquires" additional intervals of 
constancy around the points z' ~ [0, 0/2] and 0 - x' e [0/2, 0], and there become not two as in (4.3) but 
six of them, and, like (4.4), the control Ix2(x) has, as previously, two intervals of constancy like (4.4). 

5. A S I N G U L A R  C O N T R O L  

Suppose 

x3(0) = x3(0) = 0 (5.1) 

that is, the links are folded in the initial and final configurations. If the controlling moments ~q(x), ~t2(x) 
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transfer the two-link mechanism from state (2.1) to state (2.2) in a time 0, then, with condition (5.1) 

l = t &3 = 0 (5.2) 
o o 

of the time-optimal problem, we will now consider the problem of maximizing the angle of rotation 
Xl(0) at a specified time 0 and x2(0) = x2(0) = x4(0) = x4(0) = 0 subject to condition (5.1). Using the 
first two equations of (1.4) and equality (5.2), it can be shown that, subject to condition (5.1), the angle 
xff0) will be a maximum when the moment of inertia ~ remains a minimum over the whole of the interval 
0 ~< x ~< 0. In this case, when 0 ~< x ~< 0, the two-link mechanism moves with folded links and its motion 
is described by the equations 

(A+B-2C)Xl =x2, x2 =lal, x 3 ( x ) - 0  (5.3) 

It can be seen from Eqs (5.3) that the controlling m o m e n t  ~l.l('U ) which maximizes the quantity Xl(0) 
for the specified time 0 has a single switch and is described by expression (4.3) and that the controlling 
moment Is2(x), subject to the conditions ll = 12,J2 = m2 = 0 (see (4.1)), is equal to zero. 

The maximum quantity Xl(0) is a strictly monotonically increasing function of the time 0. It follows 
from this that, in the case of (5.1), a control I.tl(X) of the form of (4.3) is optimal for the time-optimal 
problem with a specified angle Xl(0) = xl0 and the equation ~t2(~) = 0 in the case of condition (4.1). 

Hence, in the case of conditions (4.1) and (5.1), the singular control Ix2(x) holds the whole time. A 
similar situation occurs in the case of values of the two-link mechanism parameters which do not satisfy 
condition (4.1) if the moment 

B-C 
Pz(x) = A+B_2CktI(x) 

which keeps the links folded satisfies the constraint (1.5). 
If the quantities I x3(0) l, I x3(0) I are not equal to zero but small compared with the magnitude of 

xl(0), it can be postulated that the time-optimal motion also contains the singular mode of motion with 
folded links, which can be called the main mode [14]. 

In order to reveal whether control (4.7), which contains a finite number of switchings, and a singular 
segment can be optimal, we find the derivative 

3132~ OH I Lq = ~2 3"¢2q 31"12 

by virtue of system (1.4), (2.5) when q = 1, 2 on a segment of the singular control. The calculation of 
expressions Lq (q = 1, 2) "by hand" is difficult because of the complexity of Eqs (2.5). In the case of 
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(4.1), they  can  be  f o u n d  us ing  symbol ic  m a t h e m a t i c a l  programs.~" In  this case,  it t u r n s  ou t  tha t  

L 1 = O, ~ = - D x z ¥  1 

where D > 0 is a constant which depends on the system parameters. Since x2(x) > 0, ¥1 > 0 on the 
trajectory corresponding to control (4.7), then L2 > 0. It follows from [15, 16] that the singular segment 
subject to the condition L2 < 0 on the optimal trajectory cannot be connected with the piecewise-smooth 
non-singular segment if the control is discontinuous at the joint. It follows from this that control (4.7) 
cannot be optimal, and any other control containing a finite number of switchings and a singular segment 
also cannot be optimal. Consequently, if a singular mode exists when Ix3(0) I, I x3(0) [ ;~ 0, then it, like 
the systems considered in [2, 3, 5-7], is "surrounded" on both sides by modes with a "chattering" control. 
In each of these modes, g2(x) has an infinite number of switching instants which are concentrated towards 
the joint with the siaagular segment. It is impossible to obtain such a control technically. However, the 
investigations which have been described above suggest that when such an optimal control is replaced 
by a control of the type of (4.7) the loss in speed of response will not be large. 
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